Part Number Hot Search : 
20KP300A ZS4741A M95160 N5235 477M00 APTGT2 1H104 SMA11
Product Description
Full Text Search
 

To Download ALD1102ASA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the ald1102 is a monolithic dual p-channel matched transistor pair intended for a broad range of analog applications. these enhancement- mode transistors are manufactured with advanced linear devices' en- hanced acmos silicon gate cmos process. the ald1102 offers high input impedance and negative current tempera- ture coefficient. the transistor pair is matched for minimum offset voltage and differential thermal response, and it is designed for switching and amplifying applications in +2v to +12v systems where low input bias current, low input capacitance and fast switching speed are desired. since these are mosfet devices, they feature very large (almost infinite) current gain in a low frequency, or near dc operating environment. when used with an ald1101, a dual cmos analog switch can be constructed. in addition, the ald1102 is intended as a building block for differential amplifier input stages, transmission gates, and multiplexer applications. the ald1102 is suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. the high input impedance and the high dc current gain of the field effect transistors result in extremely low current loss through the control gate. the dc current gain is limited by the gate input leakage current, which is specified at 50pa at room temperature. for example, dc beta of the device at a drain current of 5ma at 25 c is = 5ma/50pa = 100,000,000. features ? low threshold voltage of 0.7v ? low input capacitance ? low vos grades -- 2mv, 5mv, 10mv ? high input impedance -- 10 12 w typical ? low input and output leakage currents ? negative current (i ds ) temperature coefficient ? enhancement-mode (normally off) ? dc current gain 10 9 applications ? precision current mirrors ? precision current sources ? analog switches ? choppers ? differential amplifier input stage ? voltage comparator ? data converters ? sample and hold ? analog inverter a dvanced l inear d evices, i nc. dual p-channel matched mosfet pair ald1102a/ald1102b ald1102 operating temperature range* -55 c to +125 c0 c to +70 c0 c to +70 c 8-pin 8-pin 8-pin cerdip plastic dip soic package package package ald1102a pa ald1102b pa ald1102 da ald1102 pa ald1102 sa * contact factory for industrial temperature range. ordering information pin configuration 1 2 3 4 8 7 6 5 source 1 gate 1 drain 1 nc substrate source 2 gate 2 drain 2 top view da, pa, sa package source 1 (1) substrate (8) source 2 (7) gate 2 (6) drain 1 (3) gate 1 (2) drain 2 (5) block diagram ? 1998 advanced linear devices, inc. 415 tasman drive, sunnyvale, california 94089 -1706 tel: (408) 747-1155 fax: (408) 747-1286 http://www.aldinc.com
ald1102a/ald1102b advanced linear devices 2 ald1102 absolute maximum ratings drain-source voltage, v ds -13.2v gate-source voltage, v gs -13.2v power dissipation 500 mw operating temperature range pa, sa package 0 c to +70 c da package -55 c to +125 c storage temperature range -65 c to +150 c lead temperature, 10 seconds +260 c gate threshold voltage v t -0.4 -0.7 -1.2 -0.4 -0.7 -1.2 -0.4 -0.7 -1.2 v i ds = -10 m a v gs = v ds offset voltage v os 2 5 10 mv i ds = -100 m a v gs = v ds v gs1 - v gs2 gate threshold tc vt -1.3 -1.3 -1.3 mv/ c temperature drift on drain current i ds (on) -8 -16 -8 -16 -8 -16 ma v gs = v ds = -5v transconductance g fs 2 4 2 4 2 4 mmho v ds = -5v i ds = -10ma mismatch d g fs 0.5 0.5 0.5 % output g os 500 500 500 m mho v ds = -5v i ds = -10ma conductance drain source r ds(on) 180 270 180 270 180 270 w v ds = -0.1v v gs = -5v on resistance drain source on resistance d r ds(on) 0.5 0.5 0.5 % v ds = -0.1v v gs = -5v mismatch drain source breakdown bv dss -12 -12 -12 v i ds = -10 m a v gs =0v voltage off drain current i ds(off) 0.1 4 0.1 4 0.1 4 na v ds =-12v v gs = 0v 444 m at a = 125 c gate leakage i gss 150 150 1 50pa v ds =0v v gs =-12v current 10 10 10 na t a = 125 c input c iss 610 610 6 10pf capacitance operating electrical characteristics t a = 25 c unless otherwise specified 1102a 1102b 1102 test parameter symbol min typ max min typ max min typ max unit conditions
ald1102a/ald1102b advanced linear devices 3 ald1102 typical performance characterisitcs output characteristics drain - source voltage (v) drain - source current (ma) -80 -60 -40 -20 0 v bs = 0v t a = 25 c -10v -8v -6v -4v -2v 0-8 -2 -6 -4 -10 -12 v gs = -12v low voltage output characteristics drain -source voltage (mv) drain-source current (ma) -320 -160 0 160 320 -4 4 2 0 -2 -4v v gs = -12v -6v v bs = 0v t a = 25 c -2v -12 forward transconductance vs. drain - source voltage drain - source voltage (v) 0-8 -2 -6 -4 -10 forward transconductance ( mho) 10000 5000 2000 1000 500 200 100 v bs = 0v f = 1khz i ds = -5ma t a = +125 c t a = +25 c i ds = -1ma transfer characteristic with substrate bias gate - source voltage (v) 0 -0.8 -1.6 -2.4 -3.2 -4.0 -20 -15 -10 -5 0 drain-source current ( a) v bs = 0v 4v 6v 8v 10v 12v v gs = v ds t a = 25 c 2v gate - source voltage (v) r ds (on) vs. gate - source voltage drain - source on resistance ( ) 10000 1000 100 10 -2 0 -4 -6 -8 -10 -12 v ds = 0.4v v bs = 0v t a = +125 c t a = +25 c off drain - current vs. temperature temperature ( c) off - drain source current (a) -50 -25 +25 +50 +75 +125 +100 0 -10 x 10 -6 v ds = -12v v gs = v bs = 0v -10 x 10 -12 -10 x 10 -9
ald1102a/ald1102b advanced linear devices 4 ald1102


▲Up To Search▲   

 
Price & Availability of ALD1102ASA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X